Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles

نویسندگان

  • Jesús Vergara-Temprado
  • Annette K Miltenberger
  • Kalli Furtado
  • Daniel P Grosvenor
  • Ben J Shipway
  • Adrian A Hill
  • Jonathan M Wilkinson
  • Paul R Field
  • Benjamin J Murray
  • Ken S Carslaw
چکیده

Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concentrations that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation, and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concentrations and their effects under specific meteorological conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sea spray aerosol as a unique source of ice nucleating particles.

Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-gene...

متن کامل

An Arctic CCN-limited cloud-aerosol regime

On average, airborne aerosol particles cool the Earth’s surface directly by absorbing and scattering sunlight and indirectly by influencing cloud reflectivity, life time, thickness or extent. Here we show that over the central Arctic Ocean, where there is frequently a lack of aerosol particles upon which clouds may form, a small increase in aerosol loading may enhance cloudiness thereby likely ...

متن کامل

Spaceborne lidar observations of the ice-nucleating potential of dust, polluted dust, and smoke aerosols in mixed-phase clouds

Previous laboratory studies and in situ measurements have shown that dust particles possess the ability to nucleate ice crystals, and smoke particles to some extent as well. Even with coatings of pollutants such as sulphate and nitrate on the surface of dust particles, it has been shown that polluted dust particles are still able to nucleate ice in the immersion, deposition, condensation, and c...

متن کامل

The relevance of nanoscale biological fragments for ice nucleation in clouds

Most studies of the role of biological entities as atmospheric ice-nucleating particles have focused on relatively rare supermicron particles such as bacterial cells, fungal spores and pollen grains. However, it is not clear that there are sufficient numbers of these particles in the atmosphere to strongly influence clouds. Here we show that the ice-nucleating activity of a fungus from the ubiq...

متن کامل

On the Climatic Impact of Ocean Circulation

Integrations of coupled climate models with mixed-layer and fixed-current ocean components are used to explore the climatic response to varying magnitudes of ocean circulation. Four mixed-layer ocean experiments without ocean heat transports are performed using two different atmosphere–land components—the new GFDL AM2 and the GFDL Manabe Climate Model (MCM)—and two different sea ice components,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2018